Please use this identifier to cite or link to this item: http://117.239.156.194:8080/jspui/handle/123456789/81
Full metadata record
DC FieldValueLanguage
dc.contributor.authorN V, MAJID-
dc.date.accessioned2024-03-26T05:34:15Z-
dc.date.available2024-03-26T05:34:15Z-
dc.date.issued2024-03-
dc.identifier.urihttp://192.168.3.251:8080/jspui/handle/123456789/81-
dc.description.abstractThis paper aims to explore the arithmetic properties of Fu’s k dots bracelet partition where k = p^α, p is a prime number with p ≥ 5 and α is an integer with α ≥ 0. For p^α dots bracelet partitions with p = 5, 7 and 11, we found several exciting Ramanujan-like congruences modulo p. We also used Newman’s theorems to demonstrate certain congruence modulo p.en_US
dc.language.isoenen_US
dc.publisherGlobal and Stochastic Analysisen_US
dc.subjectCongruences, Partitions, l-Regular partitions, k Dots bracelet partitions.en_US
dc.titleFU’S p α DOTS BRACELET PARTITIONen_US
dc.typeArticleen_US
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
1. majid.pdf357.59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.